
RotDiff: A Hyperbolic Rotation Representation Model for
Information Diffusion Prediction

Hongliang Qiao
∗

Harbin Institute of Technology

Shenzhen, China

21s151112@stu.hit.edu.cn

Shanshan Feng
∗

Wecar Technology Co., Ltd.

Shenzhen, China

victor_fengss@foxmail.com

Xutao Li
†

Harbin Institute of Technology

Shenzhen, China

lixutao@hit.edu.cn

Huiwei Lin

Harbin Institute of Technology

Shenzhen, China

linhuiwei@stu.hit.edu.cn

Han Hu

Beijing Institute of Technology

Beijing, China

hhu@bit.edu.cn

Wei Wei

Huazhong University of Science and

Technology

Wuhan, China

weiw@hust.edu.cn

Yunming Ye

Harbin Institute of Technology

Shenzhen, China

yeyunming@hit.edu.cn

ABSTRACT
The massive amounts of online user behavior data on social net-

works allow for the investigation of information diffusion predic-

tion, which is essential to comprehend how information propagates

among users. The main difficulty in diffusion prediction problem is

to effectively model the complex social factors in social networks

and diffusion cascades. However, existing methods are mainly based

on Euclidean space, which cannot well preserve the underlying hi-

erarchical structures that could better reflect the strength of user

influence. Meanwhile, existing methods cannot accurately model

the obvious asymmetric features of the diffusion process. To alle-

viate these limitations, we utilize rotation transformation in the

hyperbolic to model complex diffusion patterns. The modulus of

representations in the hyperbolic space could effectively describe

the strength of the user’s influence. Rotation transformations could

represent a variety of complex asymmetric features. Further, ro-

tation transformation could model various social factors without

changing the strength of influence. In this paper, we propose a

novel hyperbolic rotation representation model RotDiff for the dif-

fusion prediction problem. Specifically, we first map each social

user to a Lorentzian vector and use two groups of transformations

to encode global social factors in the social graph and the diffusion

graph. Then, we combine attention mechanism in the hyperbolic

space with extra rotation transformations to capture local diffusion

dependencies within a given cascade. Experimental results on five
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real-world datasets demonstrate that the proposed model RotDiff

outperforms various state-of-the-art diffusion prediction models.

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies → Neural networks.

KEYWORDS
Social Networks, Diffusion Prediction, Hyperbolic Representation,

Rotation Transformation

ACM Reference Format:
Hongliang Qiao, Shanshan Feng, Xutao Li, Huiwei Lin, Han Hu, Wei Wei,

and Yunming Ye. 2023. RotDiff: AHyperbolic Rotation RepresentationModel

for Information Diffusion Prediction. In Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’23),
October 21–25, 2023, Birmingham, United Kingdom. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3583780.3615041

1 INTRODUCTION
Social media, such as Twitter and Sina Weibo, has a considerable

impact on daily life. Massive information spreads rapidly on these

platforms through social users. Interestingly, the behavior of social

users is often influenced by their friends or some high-impact users.

Indeed, the information diffusion process is affected by multiple

social factors, such as social connections, diffusion dependencies,

and potential hierarchies. We expect to infer complex social factors

and identify which users are more likely to be affected in the future.

Information diffusion prediction problems have been widely in-

vestigated for decades. Traditional methods directly calculate the

diffusion probabilities using predefined diffusionmodels [14, 20, 28],

such as independent cascade (IC) or linear threshold (LT) models.

Meanwhile, embedding-basedmethods [2, 3, 10, 38] embed diffusion

dependencies of cascades into user embeddings and calculate dif-

fusion probabilities through well-designed functions. Both classes

of methods are constrained by restrictive assumptions and tedious

feature extractions. Subsequently, due to the sequential nature of
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diffusion cascades, some researchers propose models [17, 34, 37]

exploiting recurrent neural networks (RNNs) to predict the next-

affected users. Despite progress has been achieved, such approaches

focus merely on dependencies within historical diffusion sequences,

while ignoring the impact of social relations. Recently, GraphNeural

Networks (GNNs) demonstrate the powerful expressiveness of mod-

eling graph data, enabling GNN-based methods [12, 18, 19, 31, 44]

to achieve significant performance improvements.

However, existing methods still have limitations. There are two

important social data components: the social graphs depict global

social connections among users, while the historical diffusion cas-

cades contain two types of relations. Firstly, all cascades imply

global diffusion connections. Secondly, within each individual cas-

cade, there are local diffusion dependencies among its users. Ex-

isting methods cannot effectively extract critical information from

these two components. The underlying hierarchical structures in

social data are typically ignored. Meanwhile, the existing methods

model different data components separately, leading to the learned

representation vectors cannot accurately measure the strength of

user influence. Further, considering the directionality of influence

propagation, the social factors in the social data have underlying

asymmetric characteristics. Nevertheless, existing methods cannot

accurately describe these asymmetric properties. All these deficien-

cies lead to the suboptimal performance of existing methods.

Hyperbolic representation learning and rotation transformation

provide insights to alleviate existing limitations. We observed that

hyperbolic representation methods [5, 25, 45] can effectively cap-

ture latent hierarchical structures. Due to exponential expansion

property[22], embedding user nodes into a hyperbolic space en-

ables a more precise characterization of the underlying distribution

of influence. In this way, the strength of user influence could be

more effectively distinguished by describing hierarchical features,

which is challenging to achieve for most existing models based on

Euclidean space. Consequently, we learn user embeddings in the

hyperbolic space.

Besides, we found that rotation transformations could effectively

characterize asymmetric properties of social factor. Rotation trans-

formation could effectively represent a variety of relations through

different angles. Another significant advantage of the rotation trans-

formation is that it allows for the modeling of various complex

relations without affecting the vector’s length. Thus, rotation trans-

formation could describe various social factors while preserving the

strength of the users’ influence. Inspired by this, we utilize rotation

transformation to extract latent properties within the social graph

and diffusion cascades.

Based on our findings, we address the diffusion prediction prob-

lem via rotation transformations in the hyperbolic space. We con-

struct a diffusion graph from all historical diffusion cascades that

captures global diffusion connections among users. We infer in-

formation from both the social graph and the diffusion graph to

generate user embeddings in the hyperbolic space that could accu-

rately measure the strength of each user’s influence. Moreover, we

represent the asymmetric social features on each graph with two

sets of rotation matrices, respectively. We then use user embeddings

combined with learned social features to model a given cascade

and perform the prediction task.

Specifically, we propose a novel hyperbolic rotation representa-

tion model (RotDiff) for the diffusion prediction problem. RotDiff

has three major components. First, the Lorentz rotation embedding

trains user embeddings and captures social and diffusion connec-

tions through rotation transformations in the hyperbolic space.

Second, the rotated Lorentz self-attention extracts diffusion depen-

dencies within a cascade and constructs associated latent embed-

dings. Third, the prediction module determines the possibilities of

the subsequent users who will be activated. Our main contributions

are summarized as follows:

• We investigate reflecting the strength of user influence in the

hyperbolic space. Through rotation transformations, we ef-

fectively model various complex asymmetric features in the

information diffusion process while preserving the strength

of influence. To the best of our knowledge, this is the first

work to introduce rotation transformation into the informa-

tion diffusion prediction problem.

• We develop a novel hyperbolic rotation diffusion representa-

tion model RotDiff for the information diffusion prediction

problem. Rotdiff encodes global social factors into user em-

beddings and rotation matrices by joint modeling the social

graph and the diffusion graph while further exploring local

diffusion dependencies for a specific cascade.

• We conduct extensive experiments on five real-world datasets,

demonstrating that the proposed model significantly outper-

forms various state-of-the-art diffusion prediction models.

2 RELATEDWORK
2.1 Information Diffusion Prediction
During the past decades, information diffusion prediction problems

have been widely studied. Most of the early solutions [14, 20, 28]

apply predefined diffusion models, such as the independent cascade

(IC) model and linear threshold (LT) model. Stringent assumptions

and heavy computational complexity limit the performance of this

class of methods. In addition, data-driven embedding-based meth-

ods [2, 3, 10, 38] represent nodes in the social network and diffusion

cascades as vectors, inferring propagation relationships between

users through vector calculations. However, existing embedding

models cannot effectively capture the complex patterns in real-

world diffusion cascades.

With the fast development of deep learning, researchers utilize

deep neural network-based end-to-end frameworks to capture la-

tent patterns in information diffusion. Particularly, recurrent neural

networks (RNNs) have shown excellent performance in sequence

prediction. Due to the sequential nature of cascades, RNN has been

widely applied to capture dependencies within cascades. Temporal

and sequential features are the main factors considered by RNN-

based models. Topo-LSTM [34] builds a recurrent model inferring

topological information of cascades by modeling dynamic directed

acyclic graphs. FOREST [41] encodes historical information through

RNN and combines the hidden state with social structure informa-

tion. NDM [40] employs convolutional neural networks in conjunc-

tion with attention mechanism for cascade modeling. However,

the performance of RNN-based models decreases as the sequence

length increases. Meanwhile, relying solely on sequential features

cannot characterize diffusion processes accurately.
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Due to the recent success of graph neural networks (GNNs), mod-

els based on GNN have demonstrated their effectiveness on tasks

of diffusion prediction. Some researchers represent the diffusion

information as graph data for processing through GNNs. Inf-VAE

[29] utilizes GCN to encode social homophily. DyDiff-VAE [35]

integrates GCN into GRU as the recurrent function to infer higher-

order social influence. DyHGCN [44] constructs a heterogeneous

graph to extract both the individual preference and the neighbor

influence via GCN. HyperINF [19] infers high-order relations and

cross-diffusion relations from constructed user interactive hyper-

graph and the diffusion interactive graph, respectively. MS-HGAT

[31] captures users’ interaction preferences by learning from a se-

ries of sequential hypergraphs. However, social features in social

graphs and diffusion cascades cannot be sufficiently characterized

by the simple use of GNNs. Asymmetric properties in social factors

are ignored. In addition, existing methods that create embeddings

for various components and integrate them could lead to informa-

tion loss, resulting in limited performance.

2.2 Hyperbolic Representation Learning
Recently, studies indicate that hyperbolic space could effectively

model hierarchical structures. Based on hyperbolic geometry, a

series of hyperbolic deep learning frameworks [5, 8, 13, 15, 25, 45]

have been proposed. Several studies have exhibited that models

based on hyperbolic graph neural networks outperform traditional

deep models in multiple downstream tasks, e.g., recommender sys-

tems [11, 30, 39, 43] and knowledge graph completion [1, 36]. For

diffusion prediction, existing methods hardly consider the impact of

hierarchical features on the information diffusion process. H-Diffu

[12] builds embedding vectors for the social graph and diffusion

graph in separate hyperbolic spaces and aggregates different em-

beddings with attention mechanisms. Different from H-diffu, we

consider a unified approach to learn embeddings for different com-

ponents in the same hyperbolic space.

2.3 Rotation Transformation
In recent years, rotation transformation has been applied to solve

knowledge graph embedding problems [7, 27, 32, 42]. These studies

show that rotation transformation could model various relation pat-

terns in the knowledge graphs, enhancing the expressive power of

embedding vectors. Moreover, several researchers introduce apply-

ing rotation transformation in the hyperbolic space. Chami et al. [4]

suggest a method combining hyperbolic reflections and rotations to

model complex asymmetric relations. Feng et al. [9] propose a hy-

perbolic rotation model ROLE to capture the asymmetric proximity

between nodes. Inspired by them, we utilize rotation transforma-

tions to model social connections and diffusion connections in the

information diffusion process. To the best of our knowledge, this is

the first work exploring social relations using rotation transforma-

tion in the hyperbolic space.

3 PRELIMINARIES
In this section, we first state the research problem and then intro-

duce the basics of hyperbolic geometry.

3.1 Problem Definition
A cascade 𝐶𝑚 = {(𝑢𝑚

1
, 𝑡𝑚
1
), (𝑢𝑚

2
, 𝑡𝑚
2
), · · · , (𝑢𝑚

𝐿𝑚
, 𝑡𝑚
𝐿𝑚

)} records the
diffusion process of information item 𝑚 in chronological order,

where (𝑢𝑚
𝑖
, 𝑡𝑚
𝑖
) means user 𝑖 performs a propagation action, e.g.,

forwards a Twitter message, about item 𝑚 at time 𝑡𝑚
𝑖
, and 𝐿𝑚

is the length of cascade. All observed historical cascades are de-

noted as C = {𝐶𝑚}. The cascade 𝐶𝑚 can be simplified as 𝐶𝑚 =

{𝑢1, 𝑢2, · · · , 𝑢𝐿𝑚 } if we only record the orders and ignore the spe-

cific timestamps. Further, we can split a cascade𝐶𝑚 into 𝑘 (1 ⩽ 𝑘 ⩽
𝐿𝑚 − 1) seed users 𝑆𝑘

𝐶𝑚
= {𝑢1, · · · , 𝑢𝑘 } and a target user 𝑢𝑘+1.

Quantifying and measuring various social factors in the social

data is essential to information diffusion prediction. Next, we in-

troduce two main components used in the paper: social graph and

diffusion graph, and state problem definition of information diffu-

sion prediction.

A social graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) is a directed graph that can be

used to describe the social connections between users in a social

network. 𝑉𝑆 is the node set representing social users, and 𝐸𝑆 is the

edge set representing social connections. If a following relation

exists from user 𝑢 to user 𝑣 , then there is a directed edge (𝑢 → 𝑣)
in the social graph. Similarly, a diffusion graph 𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 )
is a directed graph that contains user diffusion connections. The

diffusion graph is constructed from historical cascades C. 𝑉𝐷 is the

node set representing users of historical cascades, and 𝐸𝐷 is the

edge set representing diffusion actions. If𝑢, 𝑣 ∈ 𝑉𝑆 and we observed
user 𝑢 performed an action before user 𝑣 , i.e., for a given cascade

𝐶𝑚 , 𝑢, 𝑣 ∈ 𝐶𝑚 and 𝑡𝑢 < 𝑡𝑣 , then there is a directed edge (𝑢 → 𝑣) in
the diffusion graph. Note that we assume 𝑉𝐷 ⊂ 𝑉𝑆 .

After establishing the social graph and the diffusion graph, we

map every social user to a representation vector in the hyperbolic

space to capture his or her related social connection and diffu-

sion connection. In this way, we could explore users’ roles in the

information diffusion process.

Definition 1. (Information Diffusion Prediction Problem).
Given a social graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) and a set of historical cascades
C, our goal is to learn a diffusion representation model to predict the
target user {𝑢 |𝑢 ∈ 𝑉𝑆\𝑆𝑘𝐶𝑚 }, i.e., the next user who will be activated
by the 𝑘 seed users 𝑆𝑘

𝐶𝑚
= {𝑢1, ..., 𝑢𝑘 } in a given cascade 𝐶𝑚 .

3.2 Hyperbolic Geometry
A hyperbolic space can be viewed as a 𝑛-dimensional Riemannian

manifold of constant negative curvature. There are a number of

models that can be used to represent hyperbolic spaces, including

the Poincaré ball model, the Klein model, and the Lorentz model.

In fact, these models are mathematically equivalent and can be

converted to each other. Considering the numerical stability and

effectiveness, we choose the Lorentz model as the embedding space.

In addition, we could use the L2-norms of the Lorentzian embed-

dings to deduce the hierarchical structures[23].

A 𝑑-dimensional Lorentz model is defined as the Riemannian

manifold L𝑑𝛾 = (L𝑑𝛾 , 𝑔
𝛾
x), where 𝑔

𝛾
x = diag( [−1, 1, 1, · · · , 1]) denotes

the metric tensor. The point set L𝑑𝛾 in the Lorentz model satisfy

L𝑑𝛾 = {x ∈ R𝑑+1 : ⟨x, x⟩L = −𝛾}, where x = (𝑥0, 𝑥1, · · · , 𝑥𝑑 ) is

𝑑 + 1 dimensional Euclidean vector with 𝑥0 =

√︃
𝛾 + ∑𝑑

𝑖=1 𝑥
2

𝑖
> 0
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𝒔

Rotated Positional Encoding

Lorentz Attention

𝐑𝐨𝐭𝑸
𝒔𝒐𝒄 𝐑𝐨𝐭𝑲

𝒔𝒐𝒄 𝐑𝐨𝐭𝑽
𝒔𝒐𝒄
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𝐃𝒔𝒐𝒄
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𝐃𝒅𝒊𝒇
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Prediction

Loss

𝐑𝐨𝐭𝒅𝒊𝒇
𝒔

Rotated Positional Encoding

Lorentz Attention

𝐑𝐨𝐭𝑸
𝒅𝒊𝒇

𝐑𝐨𝐭𝑲
𝒅𝒊𝒇

𝐑𝐨𝐭𝑽
𝒅𝒊𝒇

𝑆𝐶𝑚
𝑘

𝐡𝑑𝑖𝑓

User embeddings

Rotated Lorentz Self-attention

Lorentz Rotation Embedding

Prediction Rotated Lorentz Self-attention

𝒖𝟏 → 𝒗𝟏

𝒖𝟐 → 𝒗𝟐

Figure 1: Overview of the RotDiff framework. The Lorentz rotation embedding trains user embeddings and encodes social
relations in two groups of rotation transformations in the Lorentz model. The rotated Lorentz self-attention extracts diffusion
dependencies within a cascade and generates corresponding latent embeddings. The prediction module estimates the probabili-
ties of next-activated users.

and ⟨x, x⟩L means the Lorentzian scalar product which can be

computed as:

⟨x, y⟩L = −𝑥0 · 𝑦0 +
𝑑∑︁
𝑖=1

𝑥𝑖 · 𝑦𝑖 , (1)

where, in particular, we let | |x| |L =
√︁
⟨x, x⟩L .

The Lorentz model has the constant negative curvature −𝛾 ,
where 𝛾 > 0 reflects the curvature parameter. For any two points

x, y ∈ L𝑑𝛾 , there is always ⟨x, y⟩L ⩽ −𝛾 . Compared with the

Poincaré model limiting all vectors in a ball, the vector distribu-

tion of the Lorentz model lies on the upper sheet surface of an

unbounded hyperbolic model. When 𝛾 = 1, the Lorentz model can

be view as an unit hyperboloid model [26].

According to [23], the squared Lorentz distance can reflect the

hierarchical features and is easy to calculate. In the Lorentz model,

the squared Lorentzian distance is defined as:

𝐷𝑆𝐿 (x, y) = −2𝛾 − 2 ⟨x, y⟩L . (2)

In addition, rotation transformation is a kind of hyperbolic isom-

etry and could be directly applied to Lorentzian vectors. Rotation

transformation could be easily achieved as matrix multiplication.

The rotation matrix Rot ∈ R𝑑×𝑑 is a block-diagonal matrix as:

RotΘ =


R

(
\𝑟,1

)
R

(
\𝑟,2

)
· · ·

R
(
\𝑟,𝑑/2

)
 , (3)

where, {\𝑟,1, · · · , \𝑟,𝑑/2} denotes the parameters of the rotation,

and the 2 × 2 block R(\𝑟,𝑖 ) is defined as:

R(\𝑟,𝑖 ) =
[
cos(\𝑟,𝑖 ) − sin(\𝑟,𝑖 )
sin(\𝑟,𝑖 ) cos(\𝑟,𝑖 )

]
. (4)

4 METHOD
The proposed RotDiff has three key modules as shown in Figure

1. We first build a Lorentz embedding for each social user and

then encode social factors from the social and diffusion graphs

using rotation transformations. Then, utilizing our proposed ro-

tated Lorentz self-attention, we investigate propagation informa-

tion inside a given cascade and construct latent embeddings that

contain latent information for the future affected users. Finally, we

employ the prediction module to estimate the possibility of the

next-activated user.

4.1 Lorentz Rotation Embedding
The Lorentz rotation embedding maps social users to the Lorentzian

embeddings and encodes social and diffusion connections into two

groups of rotaion transformations. These two kinds of connections

can potentially affect the diffusion of information. In previous work

[12, 31, 44], different types of embeddings are learned independently

from the social graph and diffusion cascades and then fused, which

cannot depict users’ influence and might result in information loss

during the fusion process. Instead, our model assigns each user

only a single vector and utilizes rotation transformations to capture

different social factors.

As is shown in Figure 2, the basic idea is to globally minimize

the distance between all relevant users. We say that two users are

relevant if there exists an edge between two user nodes. We expect

that user embeddings for relevant users are close to one another, and

irrelevant users are far apart. We train rotation matrices to reduce

the distance between two related embeddings without affecting the
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Social

Connection

Diffusion

Connection

Rot𝑑𝑖𝑓
𝑠

Rot𝑑𝑖𝑓
𝑡

Rot𝑠𝑜𝑐
𝑡

Rot𝑠𝑜𝑐
𝑠

𝐱𝑐

𝐱𝑎

𝑑𝑠𝑜𝑐(𝑏, 𝑐)

𝑑𝑑𝑖𝑓(𝑎, 𝑐)

||𝐱𝑎||

||𝐱𝑐||

𝐱𝑏

||𝐱𝑏||

Figure 2: Illustration of the Lorentz rotation embedding.
For edge (𝑎 → 𝑐) in 𝐺𝐷 and edge (𝑏 → 𝑐) in 𝐺𝑆 , each user
node is assigned a Lorentzian vector. Two groups of rota-
tion transformations Rot𝑠𝑜𝑐 and Rot𝑑𝑖 𝑓 are used to model
social connections and diffusion connections, respectively.
After rotation, a pair of related nodes tends to have a smaller
squared Lorentz distance. 𝑑𝑑𝑖 𝑓 (𝑎, 𝑐) = 𝐷𝑆𝐿 (x

𝑑𝑖 𝑓𝑠
𝑎 , x𝑑𝑖 𝑓𝑡𝑐 ) and

𝑑𝑠𝑜𝑐 (𝑏, 𝑐) = 𝐷𝑆𝐿 (x𝑠𝑜𝑐𝑠𝑏
, x𝑠𝑜𝑐𝑡𝑐 ).

embeddings’ modulus. In this way, we model different connections

while preserving the strength of user influence.

Specifically, to generate user representations x ∈ L𝑑𝛾 , we first
assign each user with a representation vector z ∈ R𝑑 and convert it

into the Lorentz model, as the initial user representation x0 ∈ L𝑑𝛾 ,
by a mapping function:

𝑓 : z = (𝑥1, 𝑥2, · · · , 𝑥𝑑 ) → x0 = (𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑑 ), (5)

where 𝑥𝑜 =

√︃
𝛾 + ∑𝑑−1

𝑖=1 𝑥
2

𝑖
=

√︁
𝛾 + ||z| |2, | | · | | is the L2-norm. Then,

we utilize two groups of rotation transformations to learn social

and diffusion roles for all users.

For the social graph, we take two rotation transformationsRot𝑠𝑠𝑜𝑐
and Rot𝑡𝑠𝑜𝑐 to encode social connections. Given an edge (𝑢 → 𝑣) in
the social graph, let x𝑢 and x𝑣 represent the embeddings for user 𝑢

and user 𝑣 separately. Then we apply two rotation transformations

to get rotated social embeddings as:

x𝑠𝑜𝑐𝑠𝑢 = Rot𝑠𝑠𝑜𝑐 (x𝑢 ),
x𝑠𝑜𝑐𝑡𝑣 = Rot𝑡𝑠𝑜𝑐 (x𝑣 ) .

(6)

After the rotation operation, the squared Lorentzian distance 𝐷𝑆𝐿
(x𝑠𝑜𝑐𝑠𝑢 , x𝑠𝑜𝑐𝑡𝑣 ) will be calculated to quantify the social connection

between two users.

Similarly, for the diffusion graph, we employ a rotation trans-

formation Rot𝑠
𝑑𝑖 𝑓

to describe the users’ ability to influence, and

another rotation transformation Rot𝑡
𝑑𝑖 𝑓

to represent the users’ ten-

dency to be affected. Give an edge (𝑢 → 𝑣) in the diffusion graph,

we get two rotated diffusion embeddings of user 𝑢 and user 𝑣 after

rotation operations as:

x𝑑𝑖𝑓𝑠𝑢 = Rot𝑠
𝑑𝑖 𝑓

(x𝑢 ),

x𝑑𝑖𝑓𝑡𝑣 = Rot𝑡
𝑑𝑖 𝑓

(x𝑣 ) .
(7)

After rotation operation, the squared Lorentz distance 𝐷𝑆𝐿 (x
𝑑𝑖 𝑓𝑠
𝑢 ,

x𝑑𝑖 𝑓𝑡𝑣 ) will be calculated to estimate the diffusion connections be-

tween two users. For the social and diffusion graphs, we manage to

minimize the total squared Lorentzian distance between all related

nodes.

Next, we introduce how to learn user embeddings and two groups

of rotation matrices.

For both two graphs, related nodes are intuitively expected to be

close to one another in the embedding space. Instead, unconnected

nodes should be far apart. We utilize a scoring function to estimate

the relevance of user nodes through the squared Lorentzian distance.

The score would increase as the distance between two embeddings

decreases. Thus, the scoring function is defined as:

𝑆𝑠𝑜𝑐𝑢𝑣 = −𝐷𝑆𝐿 (x𝑠𝑜𝑐𝑠𝑢 , x𝑠𝑜𝑐𝑡𝑣 ) + 𝑏𝑠𝑜𝑐𝑢 + 𝑏𝑠𝑜𝑐𝑣 ,

𝑆
𝑑𝑖𝑓
𝑢𝑣 = −𝐷𝑆𝐿 (x𝑑𝑖𝑓𝑠𝑢 , x𝑑𝑖𝑓𝑡𝑣 ) + 𝑏𝑑𝑖𝑓𝑢 + 𝑏𝑑𝑖𝑓𝑣 ,

(8)

where 𝑢 denotes the source node, 𝑣 denotes the target node, 𝑏𝑠𝑜𝑐𝑢

and 𝑏𝑠𝑜𝑐𝑣 represent the biases for nodes of the social graph, 𝑏
𝑑𝑖 𝑓
𝑢

and 𝑏
𝑑𝑖 𝑓
𝑣 represent the biases for nodes of the diffusion graph.

If there exists an edge (𝑢 → 𝑣) in the social graph, we could use

a Softmax function to estimate the probability as:

𝑃 (𝑣 |𝑢 ) = 𝑒𝑆
𝑠𝑜𝑐
𝑢𝑣

𝐸 (𝑢 ) , (9)

where 𝐸 (𝑢) = ∑
𝑖∈𝑉𝑆 𝑒

𝑆𝑠𝑜𝑐
𝑢𝑖 is the normalization term whose calcu-

lation traverses all nodes in 𝑉𝑆 . Here, we use a negative sampling

technique to simplify the computational complexity. Further, let

𝐶𝑢 be the context user set that contains all tail nodes headed by

𝑢. Assuming that tail nodes are independent to each other in 𝐶𝑢 ,

we use log probability approximation to optimize all nodes in the

social graph as:

log𝑃 (𝑣 |𝑢 ) ≈ log𝜎 (𝑆𝑠𝑜𝑐𝑢𝑣 ) + ∑
𝑖∈N log𝜎 (−𝑆𝑠𝑜𝑐

𝑢𝑖
),

𝑂𝑠𝑜𝑐 =
∑
𝑢∈𝑉𝑆 log𝑃 (𝐶𝑢 |𝑢 ) =

∑
𝑢∈𝑉𝑆

∑
𝑣∈𝐶𝑢 log𝑃 (𝑣 |𝑢 ),

(10)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) is the Sigmoid function.

In the similar way, 𝑂𝑑𝑖 𝑓 of the diffusion graph can be computed

as:

𝑂𝑑𝑖𝑓 =
∑︁
𝑢∈𝑉𝐷

log𝑃 (𝐷𝑢 |𝑢 ) =
∑︁
𝑢∈𝑉𝐷

∑︁
𝑣∈𝐷𝑢

log𝑃 (𝑣 |𝑢 ), (11)

where 𝐷𝑢 is the context user set of user 𝑢 in the diffusion graph.

Therefore, the final embedding loss is calculated as:

L𝑒𝑚𝑏 = −
(
𝑂𝑠𝑜𝑐 +𝑂𝑑𝑖𝑓

)
. (12)

In this way, the objective of learning user embeddings X ∈
L
𝑑×|𝑉𝑆 |
𝛾 in terms of Lorentzian vectors for all social users has been

achieved. Later, we use the learned embeddings and rotation matri-

ces to address the diffusion prediction tasks.

4.2 Rotated Lorentz Self-attention
For the given 𝑘 seed users 𝑆𝑘

𝐶𝑚
in the cascade 𝐶𝑚 , we expect to

aggregate the information of seed users to predict the next-affected

user, i.e., the target user 𝑢𝑘+1. To do so, we need an operation

that could explore local diffusion dependencies within the seed

users. Attention mechanism could execute weighted calculations

on vectors. However, the challenge is ensuring that the calculation

outputs are still meaningful vectors in the Lorentz model. Further,

the obtained result should be effective for our prediction task. To

achieve our goal, we propose a novel rotated Lorentz self-attention
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module that aggregates seed users’ embeddings and generates the

latent embedding, which contains needed information to predict

the next-activated user.

Inspired by [6], we apply Lorentz attention based on the concept

centroid. The basic idea of Lorentz attention is that the weight

aggregation of a set of Lorentz vectors is identical to calculate the

centroid that has the shortest squared Lorentzian distance to the

set [6]. However, the expressive power of simply using the Lorentz

attention is limited. To address this issue, we further strengthen the

expressive power of latent embeddings by rotation transformations.

We first introduce the Lorentz attention. Given three Lorentzian

vector sets, the query set Q = {q1, q2, · · · , q |𝑄 | }, the key set K =

{k1, k2, · · · , k |𝐾 | }, and the value set V = {v2, v2, · · · , v |𝑉 | }, where
|𝑉 | = |𝐾 |, the Lorentz attention result Y = {y1, y2, · · · , y |𝑄 |} is
calculated as:

y𝑖 =

∑|𝐾 |
𝑗=1
𝛼𝑖 𝑗v𝑗

√
𝛾

���∑|𝐾 |
𝑘=1

𝛼𝑖𝑘v𝑘

L

��� , (13)

where the coefficient 𝑎𝑖 𝑗 is calculated as:

𝛼𝑖 𝑗 =

exp

( −𝐷𝑆𝐿 (q𝑖 ,k𝑗 )√
𝑑

)
∑|𝐾 |
𝑘=1

exp

( −𝐷𝑆𝐿 (q𝑖 ,k𝑗 )√
𝑑

) . (14)

where 𝑑 is the dimension of vectors and 𝐷𝑆𝐿 (·) denotes the calcu-
lation of the squared Lorentzian distance.

Then, we introduce how our rotated Lorentz self-attention mod-

ule is designed. We note that two sets of learned rotation matrices

contain different social relations. Therefore, we generate two types

of latent embeddings, namely social latent embedding and diffusion

latent embedding, that utilize various learned relations separately.

We first introduce howwe get the social latent embedding. Given

k seed users 𝑆𝑘
𝐶𝑚

= {𝑢1, · · · , 𝑢𝑘 } of the cascade 𝐶𝑚 , we first map

seed nodes with their user embeddings rotated by the rotation

matrix Rot
𝑠
𝑠𝑜𝑐 to get x𝑠𝑜𝑐𝑠

𝑖
= Rot

𝑠
𝑠𝑜𝑐 (x𝑖 ) for 1 ⩽ 𝑖 ⩽ 𝑘 . The pur-

pose here is to further utilize seed users’ global social connections

learned from the social graph.

Next, we propose rotation positional encoding to add sequential

information of the cascade to the seed users. Let Rot
𝑝𝑒

𝑖
as a constant

rotation matrix that could rotate embeddings by a fixed angle \𝑖 ,

where \𝑖 is only related to the sequential position 𝑖 . After that, we

get x𝑠𝑜𝑐𝑠
𝑝,𝑖

= Rot
𝑝𝑒

𝑖
(x𝑠𝑜𝑐𝑠
𝑖

).
With three extra rotation operations, the social latent embedding

h𝑠𝑜𝑐 ∈ L𝑑𝛾 is calculated as:

h𝑠𝑜𝑐 =

∑𝑘
𝑖=1

𝛼𝑖 z
𝑠𝑜𝑐
𝑉 ,𝑖

√
𝛾

����∑𝑘𝑖=1 𝛼𝑖 z𝑠𝑜𝑐𝑉 ,𝑖 L ���� ,

𝛼𝑖 =

exp

( −𝐷𝑆𝐿 (z𝑠𝑜𝑐
𝑄,𝑖

,z𝑠𝑜𝑐
𝐾,𝑖

)
√
𝑑

)
∑𝑘
𝑗=1

exp

( −𝐷𝑆𝐿 (z𝑠𝑜𝑐
𝑄,𝑖

,z𝑠𝑜𝑐
𝐾,𝑗

)
√
𝑑

) ,
(15)

where, z𝑠𝑜𝑐
𝑄,𝑖

= Rot𝑄 (x𝑠𝑜𝑐𝑠
𝑝,𝑖

), z𝑠𝑜𝑐
𝐾,𝑖

= Rot𝐾 (x𝑠𝑜𝑐𝑠𝑝,𝑖
) and z𝑠𝑜𝑐

𝑉 ,𝑖
= Rot𝑉 (x𝑠𝑜𝑐𝑠𝑝,𝑖

).
Here, Rot

𝑠𝑜𝑐
𝑄
, Rot𝑠𝑜𝑐

𝐾
, Rot𝑠𝑜𝑐

𝑉
are three trainable rotation matrices.

Similarly, we could generate the diffusion latent embedding h𝑑𝑖 𝑓 .
Next, we will introduce how we use h𝑠𝑜𝑐 and h𝑑𝑖 𝑓 to predict the

next-activated user.

Table 1: Statistics of datasets used in our experiments.

Dataset #Nodes #Edges #Cascades #Ave Length

Android 9,958 48,573 679 41.05

Christianity 2,897 35,624 587 25.10

Memetracker 4,709 - 12,661 16.24

Twitter 12,627 309,631 3,442 32.60

Douban 12,232 396,580 3,475 21.76

4.3 Prediction
We utilize two kinds of latent embeddings to achieve the prediction.

Our estimate of the likelihood is based on the squared Lorentz

distance. Users who are closer to the latent embedding are more

likely to be influenced by related seed users. Further, we utilize

additional linear layers to extract information in latent embeddings

as compensation for each potential target user. Therefore, for the

given 𝑆𝑘
𝐶𝑚

, two likelihoods y𝑠𝑜𝑐 ∈ R1×|𝑈𝑆 | and y𝑑𝑖 𝑓 ∈ R1×|𝑈𝑆 | are
calculated as:

y𝑠𝑜𝑐 = D𝑠𝑜𝑐 + h𝑇𝑠𝑜𝑐W𝑠 + b𝑠 ,
y𝑑𝑖𝑓 = D𝑑𝑖𝑓 + h𝑇

𝑑𝑖𝑓
W𝑑 + b𝑑 ,

(16)

where D𝑠𝑜𝑐 ∈ R1×|𝑈𝑆 | and its element D𝑠𝑜𝑐,𝑖 = −𝐷𝑆𝐿 (h𝑠𝑜𝑐 , x𝑠𝑜𝑐𝑡𝑖
),

similarly, D𝑑𝑖 𝑓 ∈ R1×|𝑈𝑆 | , D𝑑𝑖 𝑓 ,𝑖 = −𝐷𝑆𝐿 (h𝑑𝑖 𝑓 , x
𝑑𝑖 𝑓𝑡
𝑖

). W𝑠 ∈
R𝑑×|𝑈𝑆 | and W𝑑 ∈ R𝑑×|𝑈𝑆 | are two trainable weight matrices,

b𝑠 ∈ R1×|𝑈𝑆 | and b𝑑 ∈ R1×|𝑈𝑆 | are the biases.
Thus, the activation probabilities ŷ ∈ R1×|𝑈𝑆 | for all social users

are calculated as:

ŷ = Softmax

(
y𝑠𝑜𝑐 + y𝑑𝑖𝑓 +M𝑝𝑟𝑒

)
, (17)

M𝑝𝑟𝑒
is used to mask the seed users in the cascade. M𝑝𝑟𝑒

𝑖
= −∞, if

user 𝑖 is a seed user, else M𝑝𝑟𝑒

𝑖
= 0.

Finally, let |S| represents the total number of seed user sets, the

prediction loss is calculated via the cross-entropy loss function as:

L𝑝𝑟𝑒 = −
|S|∑︁
𝑗=1

|𝑈𝑆 |∑︁
𝑖=1

y𝑗,𝑖 log(ŷ𝑗,𝑖 ), (18)

where y𝑗,𝑖 = 1 if user 𝑢𝑖 is the target user, y𝑗,𝑖 = 0 otherwise.

4.4 Objective Function
RotDiff needs to compute two parts of losses. The first part is the

embedding loss from the Lorentz rotation embedding, while the

second part is the prediction loss from the prediction process. Hence,

the final loss function is calculated as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑒𝑚𝑏 + L𝑝𝑟𝑒 . (19)

The objective of the RotDiff is to minimize the sum loss L𝑡𝑜𝑡𝑎𝑙 ,
which could be optimized through Riemannian Adam [21].

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We evaluate the performance of our RotDiff on five

publicly available real-world datasets: (1) Android [29] consists

of users’ interactions for an Android topic on various channels

from a community Q&A website Stack-Exchanges. Questions and

answers between users constitute their friendship relationship. (2)

Christianity [29] contains the friendship network and cascade

interactions associated with the Christian topic on Stack-Exchanges.

(3) Memetracker [24] compiles millions of news articles and blog
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posts from internet sources and monitors the most popular terms.

Each meme is viewed as a piece of information, and each URL is

handled as a user. This dataset has no underlying social graph. (4)

Twitter [16] comprises records of Twitter messages shared between

users on Twitter, where users can follow one another. (5) Douban
[46] is a compilation of book-sharing behaviors on the Douban

website. The co-occurrence connection of users is interpreted as

their social relation. The statistics of the used datasets are shown

in Table 1.

5.1.2 Baselines. To demonstrate the effectiveness of RotDiff, we

compare it with the following state-of-the-art models.

• NDM [40]: a model combining convolutional neural network

with attention mechanism.

• Inf-VAE [29]: a variational autoencoder framework that uses

GCN to encode social homophily and positional-encoding

to encode temporal influence.

• FOREST [41]: a recurrent model that employs GRU to learn

sequential features and extracts network structure informa-

tion via GCN.

• DyHGCN [44]: a model based on GCN and attention mech-

anism that learns user preference from both the social graph

and the diffusion graph.

• HyperINF [19]: a GNN-based model inferring diffusion de-

pendencies by dual-channel hypergraph neural networks.

• MS-HGAT [31]: a GCN-based method that constructs hyper-

graphs to depict interaction dependencies within a cascade.

• H-diffu [12]: a hyperbolic presentation method jointly mod-

eling the diffusion cascades and social graphs in different

hyperbolic spaces.

5.1.3 Implementation Details. Following the evaluation protocol of
[12, 31, 41, 44], we regard the diffusion prediction task as a retrieval

problem. We employ the suggested default parameters from the

original papers for all baselines. The curvature parameter 𝛾 is set

to 1. The default batch size is 64. The number of dimensions 𝑑 is

set to 64 to maintain the same settings as the baseline approaches

[12, 31, 44]. The default number of negative samples 𝑛 is 20 which

allows for reasonable prediction performance and efficiency. We

optimize our model with Riemannian Adam [21]. For each dataset,

we randomly split 80% as the training set, 10% as the validation set,

and the remaining 10% as the test set. Similar to the work [31, 41, 44],

we use Hits@k (hits score on top 𝑘) and MAP@k (mean average

precision on tok 𝑘) as evaluation metrics. In our experiments, we set

𝑘 as 10, 50, and 100, respectively. We build our model
1
in PyTorch

and run tests on an Ubuntu server equipped with a 12-core Intel

Xeon(R) 2.10 GHz CPU and two GTX 3090 GPUs.

5.2 Experimental Results
5.2.1 Overall Results. The experimental results of the proposed

model are presented in Table 2 and Table 3. In each table, we show

the results of an evaluation metric on five datasets. The best scores

are in boldface, and the second best scores are underlined. The

reported results of the methods are the average values of five runs.

The RotDiff considerably outperforms all the state-of-the-art

baselines on Hit@k and MAP@k metrics. Compared with previous

1
Code available at https://github.com/PlaymakerQ/RotDiff

models, RotDiff could effectively explore social connections and

diffusion dependencies from the diffusion data to predict the target

users in the future. In detail, methods applying GNNs to explore

graph data generally perform well. Instead, NDM that utilizes CNN

and attention mechanism gets limited performance. FOREST and

Inf-VAE focus on modeling static user relations. Hence the obtained

performance improvement is limited. DyHGCN and MS-HGAT

achieve relatively high performance by creating a series of com-

plex hypergraphs describing diffusion interactions. H-diffu as a

hyperbolic embedding method has better performance than most

methods based on Euclidean space.

The experimental results of RotDiff demonstrate the effective-

ness of our proposed representation model for diffusion prediction

tasks. This suggests that compared to Euclidean methods, hyper-

bolic representations are more effective in preserving hierarchy

features. Meanwhile, modeling the asymmetric features of social

factors could accurately depict information diffusion processes. For

datasets Android, Christianity, and Twitter, RotDiff achieves an

average performance improvement of over 10%. Especially for Twit-

ter, our model has improved up to 28% on MAP@k scores. For

dataset Memetracker, despite the lack of the social graph, the per-

formance is still improved over previous models by only modeling

the diffusion graph, which indicates the flexibility of our model.

Overall, RotDiff consistently outperforms all the baselines, demon-

strating its superiority in information diffusion prediction.
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Figure 3: The effect of dimension 𝑑 on Android.
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Figure 4: The effect of dimension 𝑑 on Christianity.

5.2.2 Effect of Embedding Dimension. We examine the influ-

ence of dimension 𝑑 on two datasets Android and Christianity. The

results are shown in Figure 3 and Figure 4. The results indicate

that our proposed representation method has significant expres-

sive power with different dimensions when compared with the

other three baselines on Hits@50 and MAP@50 scores. The scores

rise as 𝑑 increases because larger dimensions may more accurately
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Table 2: The prediction results of Hits@k on five datasets.

Dataset Android Christianity Memetraker Twitter Douban

Hits@k @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

NDM 0.0339 0.0953 0.1572 0.1651 0.3510 0.4553 0.2083 0.3663 0.4583 0.1934 0.2941 0.3573 0.1013 0.2123 0.3125

Inf-VAE 0.0673 0.1573 0.2179 0.1774 0.3960 0.5215 0.2124 0.4077 0.4934 0.1476 0.3178 0.4512 0.1116 0.2214 0.3468

FOREST 0.0700 0.1514 0.2237 0.2632 0.4909 0.6056 0.2963 0.4780 0.5786 0.2552 0.3850 0.4607 0.1868 0.3084 0.3857

DyHGCN 0.0842 0.1915 0.2679 0.2594 0.4976 0.6047 0.2952 0.4864 0.5848 0.2901 0.4688 0.5719 0.1987 0.3289 0.3942

HyperINF 0.0848 0.1553 0.2236 0.2700 0.4460 0.5165 0.2483 0.4634 0.5949 0.2692 0.4442 0.5648 0.1834 0.3321 0.4016

MS-HGAT 0.1049 0.1987 0.2747 0.2781 0.4814 0.5703 0.2843 0.4966 0.6047 0.2996 0.4654 0.5735 0.2065 0.3504 0.4136

H-diffu 0.0981 0.1860 0.2623 0.2746 0.5089 0.6004 0.2195 0.4499 0.5720 0.2707 0.4533 0.5636 0.1984 0.3479 0.4155

RotDiff 0.1144 0.2304 0.3130 0.3237 0.5625 0.6674 0.3066 0.5170 0.6206 0.3590 0.5246 0.6121 0.2216 0.3823 0.4637

Table 3: The prediction results of MAP@k on five datasets.

Dataset Android Christianity Memetraker Twitter Douban

MAP@k @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

NDM 0.0219 0.0244 0.0252 0.0676 0.0751 0.0765 0.1059 0.1131 0.1144 0.1296 0.1339 0.1348 0.0836 0.0879 0.0936

Inf-VAE 0.0426 0.0441 0.0482 0.1035 0.1194 0.1249 0.1345 0.1379 0.1446 0.1632 0.1725 0.1747 0.1044 0.1098 0.1142

FOREST 0.0381 0.0416 0.0426 0.1328 0.1433 0.1449 0.1553 0.1637 0.1751 0.1733 0.1790 0.1801 0.1086 0.1146 0.1183

DyHGCN 0.0458 0.0503 0.0514 0.1303 0.1415 0.1432 0.1611 0.1623 0.1725 0.1751 0.1832 0.1847 0.1048 0.1114 0.1148

HyperINF 0.0424 0.0461 0.0467 0.1629 0.1719 0.1732 0.1434 0.1545 0.1566 0.1679 0.1756 0.1774 0.1042 0.1139 0.1138

MS-HGAT 0.0633 0.0675 0.0685 0.1732 0.1825 0.1836 0.1542 0.1641 0.1657 0.1880 0.1951 0.1965 0.1122 0.1187 0.1198

H-diffu 0.0606 0.0643 0.0653 0.1689 0.1795 0.1808 0.1409 0.1514 0.1531 0.1777 0.1868 0.1885 0.1067 0.1017 0.1127

RotDiff 0.0696 0.0745 0.0756 0.1981 0.2091 0.2105 0.1653 0.1691 0.1766 0.2406 0.2482 0.2495 0.1170 0.1254 0.1266

Table 4: The effect of curvature parameter 𝛾 .

Dataset Android Christianity

Metrics (@50) Hits MAP Hits MAP

𝛾 = 0.1 0.2312 0.0728 0.5402 0.2087

𝛾 = 0.3 0.2296 0.0709 0.5513 0.2053

𝛾 = 0.6 0.2258 0.0724 0.5670 0.2054

𝛾 = 1.0 0.2304 0.0745 0.5625 0.2091
𝛾 = 1.5 0.2289 0.0729 0.5603 0.2041

𝛾 = 2.0 0.2120 0.0724 0.5491 0.2053

represent the complicated diffusion relationships. When the dimen-

sionality exceeds a certain value (e.g., 𝑑 ⩾ 64), the performance of

RotDiff becomes saturated.

5.2.3 Effect of Curvature. The hyperbolic space used in our

model has a fixed curvature, and different curvature values may

affect the prediction performance of the model. Thus, we inves-

tigate the effect of different curvatures parameter 𝛾 on Android

and Christianity. The experimental results are shown in Table 4,

where the best scores are in boldface. We observe that performance

is not very sensitive to the value of 𝛾 . However, when the value

of 𝛾 increases to 2, the performance of the model drops slightly.

Empirically, we could simply set 𝛾 = 1 for most general cases.

5.2.4 Effect of Training Set Proportion. The quantity of the

training set may affect the performance of the model. Thus, we

change the training set proportion to investigate model perfor-

mance changes. To do so, we keep the validation and test sets

unchanged and change the proportion of the training set to the

whole dataset. The experimental results on two datasets are shown

in Figure 5 and Figure 6. Hits@50 and MAP@50 are selected as

evaluation metrics. On Christianity, RotDiff could outperform other

three baselines on both metrics with just a small amount of training

data (i.e., 30%). In terms of Twitter, the performance of all models

exhibits a gradual improvement as the amount of training data

increases. Nevertheless, Rotdiff only requires 50% of the training

data to outperform other models under 80% of the training set.

Overall, RotDiff achieves the best performance under any train set

proportion, showing the effectiveness and stability of our approach.
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Figure 5: The effect of training set proportion onChristianity.
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Figure 6: The effect of training set proportion on Twitter.

5.3 Ablation Study
In this section, we investigate the effectiveness of the proposed

modules of RotDiff through a series of ablation experiments on
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Table 5: The results of ablation study.

Dataset Christianity Twitter

Metrics (@50) Hits MAP Hits MAP

(1) w/o hyperbolic 0.5312 0.1928 0.5102 0.2287

(2) only soc-graph 0.5446 0.1993 0.5087 0.2300

(3) only dif-graph 0.5580 0.1974 0.5210 0.2319

(4) w/o Lo-rot-emb 0.5369 0.1955 0.4867 0.2137

(5) w/o all-att 0.5133 0.1845 0.4783 0.2032

(6) w/o Rot-in-att 0.5446 0.1924 0.5186 0.2295

RotDiff 0.5625 0.2091 0.5246 0.2482

various model components. Specifically, we conduct the follow-

ing ablation studies: (1) w/o hyperbolic. Implement our model

RotDiff in Euclidean space. (2) only soc-graph. Remove diffusion

graph modeling, we only use Lorentz rotation embedding on the

social graph. (3) only dif-graph. Remove social graph modeling,

we only use Lorentz rotation embedding on the diffusion graph.

(4) w/o Lo-rot-emb. Remove the whole module Lorentz rotation

embedding. Instead, we just assign each user a trainable embedding

with random initialization. (5) w/o all-att. Remove the whole ro-

tated Lorentz self-attention. Instead, we use a general self-attention

module proposed in the work [33]. (6) w/o Lo-att. Remove extra

rotation operations of the attention module, and we only calculate

the centroid using Equation (13).

The experimental results of ablation study are reported in Table

5. We have the following observations. The result (1) indicates

that Hits@50 and MAP@50 scores drop on both datasets when

the model is deployed in Euclidean space. This suggests that the

underlying hierarchical structures of the data can be captured in

the hyperbolic space, leading to better prediction performance.

The results (2)-(4) are related to Lorentz Rotation Embed-
ding. Scores on both datasets degrade to some extent when the

Lorentz-rotated embeddings are removed. This suggests that social

connections and diffusion dependencies are important for diffusion

prediction. We observe that modeling merely the diffusion graph

has better scores than modeling only the social network, indicating

that diffusion dependencies have a more significant role than social

connections. Moreover, when the model solely relies on historical

cascade information via the attention mechanism without learning

user representations from both graphs, its performance degrades

significantly due to the absence of capturing crucial social factors.

Obviously, the best results are obtained when modeling both graphs

simultaneously.

The results (5) and (6) are related to Rotated Lorentz Self-
attention. We find that after removing two classes of rotation

transformations in the self-attention module, both the Hits@50 and

MAP@50 scores would decrease to a certain extent. This shows that

proposed rotation operations could further strengthen the expres-

sive ability of user embeddings and latent embeddings. In addition,

when a general self-attention module replaces the whole rotated

Lorentz self-attention, the model’s performance drops significantly.

Since the output of the self-attention can no longer be guaranteed to

be Lorentz vectors, it leads to a deviation in the feature information

contained in the embeddings.

Overall, the results of the ablation study demonstrate the impor-

tance of each component. By integrating these components, the

RotDiff model can obtain the best experimental results.

5.4 Visualization
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Figure 7: The correlation between the L2-norm of user em-
beddings and node degree.

We investigate the features of user embeddings in the hyperbolic

space through the visualization method. In Figure 7, we present the

correlation between the L2-norm of learned user embeddings and

node degree on Android and Christianity. We have the following

findings. First, the latent hierarchical features in the social data are

captured. In general, user nodes with higher degrees have larger

influence. Hence, the distribution of user influence in two datasets

has apparent characteristics of power law distribution. Then, the

larger the degree of user nodes, the smaller the L2-norms of related

user embeddings. In the hyperbolic space, user nodes with strong in-

fluence strength tend to approach the origin. In contrast, user nodes

with weak influence would move gradually away from the origin

due to their limited connections with other nodes. In summary,

the hyperbolic space is well-suited for solving problems related to

social influence, including information diffusion prediction.

6 CONCLUSION
In this paper, we study the information diffusion prediction task.

We observe that existing models cannot effectively describe under-

lying hierarchical structures and learn complex asymmetric social

factors, leading to limited prediction performance. Embedding in

the hyperbolic space can depict the underlying hierarchical stric-

tures. Further, rotation transformation could effectively capture

complex asymmetric features and enhance the expressive power

of learned embeddings. Motivated by our observations, we em-

bed social users in the hyperbolic space and extract various so-

cial relations with trainable rotation matrices. Thus, we propose a

new hyperbolic rotation representation model RotDiff to address

the diffusion prediction problem. RotDiff incorporates three main

modules: the Lorentz rotation embedding, the rotated Lorentz self-

attention, and the prediction module. We optimize the hyperbolic

representations by learning the social and diffusion graphs simulta-

neously. We apply the proposed rotated Lorentz self-attention for a

given diffusion cascade to infer the diffusion dependencies during

information propagation. The empirical results on five real-world

datasets demonstrate that our proposed model RotDiff significantly

outperforms various state-of-the-art baselines.
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